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Abstract. In 1932, H. Wagner formulated the problem of the entry into water of an infinite wedge moving
vertically downwards with constant speed. Among much else, Wagner noted that, in the absence of gravity,
viscosity and surface tension, a similarity transformation removes time from the problem. Many other authors have
considered the problem since 1932. The present paper settles a question, left open in earlier work, concerning the
contact angle πβ; this angle is shown, together with the wedge angle (or vertex angle) 2πα, in Figure 1(b). The
question is whether the supremum πβ of πβ, over the whole set of solutions having 0 < 2πα < π , is equal to
π/4 or to a smaller value. The answer is that β < 1/4 (and the proof suggests that 1/4 − β is not small relative
to the range of β); this has long been indicated by numerical work, but (as far as we know) has not been proved
rigorously until now. The paper also introduces an integral equation of boundary-layer type that allows numerical
calculation without extrapolation of the limiting solution as α → 0 and of the value β0 corresponding to α = 0.
(Such calculation is not possible with the full integral equation governing the problem.) It turns out that this same
integral equation of boundary-layer type also governs the other two critical cases of the problem: β → 0 and
β → 1/4; therefore it may be called an all-purpose boundary-layer equation. Numerical calculation with this
equation indicates that β0 = β and that β0 = 0.100 ± 0.002, which is essentially in agreement with earlier,
extrapolated values.
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1. Introduction

This paper concerns the free-boundary problem formulated by Wagner [1] of an infinite wedge
moving vertically downwards with constant velocity and meeting, at time zero, the horizontal
free surface of water. One wishes to describe the subsequent motion of this free boundary
and of the water. Gravity, viscosity and surface tension being neglected, there is a similarity
transformation that reduces the number of independent variables from three to two (but does
not remove the difficulty of two nonlinear boundary conditions).

The paper supplements two others: a long paper [2] presenting, in many steps and with
many estimates, a proof of the existence of solutions1 ; and a short paper [3] that uses the
existence theory to derive approximations to the flow for blunt wedges, that is, for wedge
angles close to π . The reader is not assumed to have knowledge of either [2] or [3].

There are two important angles in the problem (Figure 1 (b)): the wedge angle (or vertex
angle) 2πα and the contact angle πβ, which is that between the wedge face AB and the
1The proof of the existence theorem was completed (in full detail) in 1994; that the paper has been written only
partly is the result of procrastination by L.E.F., who can only apologize abjectly to the readers and editor of the
present paper.
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Figure 1. Notation.

tangent to the free boundary BC at the contact point B. The integral equation to which the
problem is reduced (in all three papers, [2], [3] and the present one), and which resembles that
used by Dobrovol’skaya [4] for numerical calculation, admits solutions only if 0 < β < 1/4.
This was already noted and discussed by Garabedian [5], Dobrovol’skaya [4] and Mackie [6].

That β < 1/4 is perhaps surprising: one expects that (in the absence of viscosity and
surface tension) the water should become undisturbed as α → 0, so that πβ → π/2. The
explanation is that there is a boundary-layer phenomenon near the contact point as α → 0: in
a small region near B, of width proportional to α, disturbances are not small as α → 0.

Notation. Throughout the paper the statements α → 0, α → 1/2, β → 0 and β → 1/4
refer to positive values of α, 1/2 − α, β and 1/4 − β, unless the contrary is explicitly stated.

The necessary condition β < 1/4 is an embarrassment if one prescribes α ∈ (0, 1/2)

and seeks β as part of the solution. For this reason, and for two others to be explained at the
end of Section 2.3, we prescribe the contact angle πβ with 0 < β < 1/4 and calculate the
wedge angle 2πα a posteriori. The solutions established in [2] reside in the product space
(0, 1/4) × Y of the interval (0, 1/4) housing β and the Banach space Y housing functions h

that determine the free boundary. It is proved in [2] that there is a connected set � of solutions
(β, h) in (0, 1/4) × Y such that α(β, h) → 1/2 as β → 0 and such that every value α in the
open interval (0, 1/2) occurs at least once. Let β denote the supremum of β over �; it is not
known from [2] whether β = 1/4 or β < 1/4. Let β0 be, loosely speaking, the first zero of
α(β) as β increases from 0; more precisely, let

β0 := inf{β∗ ∈ (0, β ] | lim infβ→β∗α(β, h) = 0}. (1.1)
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It is not known from [2] whether β0 = β; nor whether the map β �→ α(β, h) is a continuous
function or some set-valued horror.

On the other hand, reports of numerical calculation [4, 7, 8] display either β(α) or α(β)

as a beautiful monotonic curve, with β0 = β and approximately equal to 0.1; moreover, the
various calculations show good agreement; see Section 6 below. But there is a difficulty even
here: the value of β0 is necessarily the result of extrapolation in all these calculations, because
algorithms designed for the interior of the interval (0, 1/2) of α, or of the interval (0, β0) of
β, cannot deal with the gradients in the boundary layer that forms near the contact point as
α → 0.

The contributions of the present paper are

(a) a proof that β < 1/4, ending with a statement that is quantitative and suggests that β is
substantially less than 1/4;

(b) derivation of a boundary-layer approximation to the basic integral equation that allows
β0 to be calculated numerically without extrapolation;

(c) a demonstration that this boundary-layer equation governs all three critical cases of the
problem, namely, β → 0, β → β0 and β → 1/4;

(d) a more complete picture of the flow for α → 0, in that the boundary-layer solution for
β = β0 provides an inner approximation that complements (in the sense of matched
asymptotic expansions) the outer approximation derived by Mackie [9].

2. Formulation of the mathematical problem

2.1. THE IDEALIZED PHYSICAL PROBLEM

At times T ≤ 0, liquid at rest occupies the half-space {(x∗, y∗) ∈ IR2 | y∗ < 0}. The ∗
distinguishes physical variables from the reduced variables to be introduced in Section 2.2.
An infinite wedge, of vertex angle 2πα (0 < α < 1/2), moves downwards with constant
speed V > 0 for all time; its vertex meets the origin (0, 0) at time T = 0. At times T > 0, the
fluid domain is the open set �∗ ⊂ IR2 shown in Figure 1(a) and bounded by the wedge face
AB, the free boundary BC and the vertical line DA below the vertex A of the wedge.

Let (u∗, v∗) be the fluid velocity and let a∗ and b∗ be material co-ordinates such that the
particle or material point labelled (a∗, b∗) for all time has position (x∗, y∗) = (a∗, b∗) at time
T = 0. Then the fluid velocity is

(u∗, v∗) =
(

∂x∗

∂T
,
∂y∗

∂T

)∣∣∣∣
(a∗,b∗)fixed

under the fundamental map (a∗, b∗, T ) �→ (x∗, y∗). Whether, in any given statement, u∗ and
v∗ are to be regarded as functions of (a∗, b∗, T ) or of (x∗, y∗, T ) or of (x, y) or of . . . will be
implied by the context, throughout the paper.

The momentum equation for an inviscid fluid of constant density ρ > 0, subject to no
extraneous force, may be written(

∂2x∗

∂T 2
,
∂2y∗

∂T 2

)∣∣∣∣
(a∗,b∗)fixed

= − 1

ρ

(
∂p∗

∂x∗ ,
∂p∗

∂y∗

)
, (2.1)
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where p∗(x∗, y∗, T ) denotes the fluid pressure. The free boundary BC is now given the
complex representation

z∗ = Z∗(a∗, T ), 0 < a∗ < ∞, T ≥ 0,

where z∗ = x∗ + iy∗ and a∗ is the material co-ordinate introduced above. We seek a free-
boundary function Z∗ and a complex velocity field u∗ − iv∗ satisfying six conditions. The first
of these is the requirement that the velocity field (u∗, v∗) is to be divergence free, because
the fluid is incompressible, and irrotational, because the fluid is inviscid. Conditions (II) to
(V) are self-explanatory. Equation (2.6) results from the tangential component on BC of the
momentum equation (2.1): we form the scalar product of that equation and the tangential
vector (∂X∗/∂a∗, ∂Y ∗/∂a∗), where X∗ + iY ∗ = Z∗.

(I) For each fixed T > 0, the complex velocity u∗ − iv∗ is to be holomorphic in �∗ (as a
function of z∗) and continuous on the closure �∗.

(II) On the wedge face AB, the normal velocity of the fluid is to be that of the wedge:

u∗ cos πα − v∗ sin πα = V sin πα on AB. (2.2)

(III) Symmetry about the y∗-axis demands that

u∗ = 0 on AD. (2.3)

(IV) The far velocity field is to be at most that of a dipole:

u∗ − iv∗ = O(|z∗|−2) as |z∗| → ∞. (2.4)

(V) The free boundary BC is to be a material curve:

∂Z∗

∂T
(a∗, T ) = (u∗ + iv∗)

∣∣∣∣
z∗=Z∗(a∗,T )

, 0 < a∗ < ∞, T > 0. (2.5)

(VI) The pressure on BC is to be constant:

Re
∂Z∗

∂a∗
∂2Z∗

∂T 2
= 0, 0 < a∗ < ∞, T > 0, (2.6)

where the arguments a∗ and T are implied, Re denotes the real part, and the bar denotes
complex conjugation (z∗ := x∗ − iy∗).
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2.2. THE SIMILARITY TRANSFORMATION AND SOME CONSEQUENCES

There is no constant characteristic length in the problem; therefore, VT can be used in this
rôle. We make the transformation

z∗ = V T z (z = x + iy, T > 0), (2.7a)

(u∗ − iv∗)(z∗, T ) = V (u − iv)(z), (2.7b)

Z∗(a∗, T ) = V T Z(a), where a = a∗

V T
. (2.7c)

The new variables z, u−iv,Z and a will be called reduced variables; the reduced fluid domain,
the same for all T > 0 and shown in Figure 1(b), is � = {z | V T z ∈ �∗}. Here and elsewhere
points (x, y) ∈ IR2 are identified with points z = x + iy ∈ C.

We now seek complex-valued functions Z ∈ C1[0,∞) ∩ C2(0,∞) and u − iv ∈ C(�),
with u− iv holomorphic in �, such that the reduced versions of (II) to (VI) hold. The reduced
forms of (II) to (IV) are obvious. The material-curve condition (V) extends to a = 0 by
continuity (in view of our hypothesis about Z) and becomes

Z(a) − aZ′(a) = (u + iv)|z=Z(a), 0 ≤ a < ∞, (2.8)

where (.)′ denotes differentiation. The constant-pressure condition (VI) becomes

Re Z′Z′′ = 1

2

d

da
|Z′|2 = 0, 0 < a < ∞, (2.9)

where the argument a is implied.
It is known from early papers [1, 4–6] that, if these reduced forms of (I) to (VI) admit a

solution Z, u− iv having the smoothness specified above, then there are four noteworthy con-
sequences, as follows. (In [2] these conclusions are derived in full detail; here brief statements
will suffice.)

1. Conservation of arc length on BC. We demand that Z∗ be continuous at (a∗, 0) with
a∗ > 0, so that Z(a)/a = Z∗(a∗, T )/a∗ → 1 as T → 0 and a → ∞. Then (2.4) and
integration of (2.8) give

Z(a) = a + O(a−2) as a → ∞, (2.10a)

whence (2.8), as it stands, implies that

Z′(a) = 1 + O(a−3) as a → ∞. (2.10b)

It follows from (2.9) and continuity of Z′ at 0 that

|Z′(a)| = 1, 0 ≤ a < ∞, (2.11a)

equivalently that
∣∣∣∣∂Z∗

∂a∗ (a∗, T )

∣∣∣∣ = 1, 0 ≤ a∗ < ∞, T ≥ 0. (2.11b)
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(For T = 0, Z∗(a∗, 0) = a∗ by the definitions of a∗ and Z∗.) Integrating (2.11b) over the
interval [a∗

1 , a∗
2 ], where 0 ≤ a∗

1 < a∗
2 , we see that the arc length between any two material

points of the free boundary (here labelled (a∗
1 , 0) and (a∗

2 , 0) ) is independent of T .

2. The angle ϑ(a). Equation (2.11a) allows us to write the unit tangent to BC as

Z′(a) = eiϑ(a), (2.12)

where ϑ(a) → 0 as a → ∞. If the curvature ϑ ′(a) is known on (0,∞), then two integrations
yield Z(a); in principle the whole flow is then known. It is essentially the function ϑ ′ that we
shall pursue.

3.The Wagner function W . Let U := u − iv; we define

W(z0) :=
∫ z0

∞
U ′(z)1/2dz (z0 ∈ �), (2.13)

choosing arg U ′(z)1/2 = 0 for z = iy, y < −1. Under hypotheses stated by Mackie [6, pp.
7–9] and satisfied by the solutions in [2], the image of � in the W -plane is a triangle. (Wagner
pointed out that W maps � conformally onto a polygon, but presented an incorrect polygon.)

4. Mackie’s inequality. Recall that 2πα is the wedge angle and πβ the contact angle. If the
free boundary is convex, which is amply the case for the solutions in [2], then it follows from
(2.10) and (2.11) that (for 0 < α < 1/2)

α + β <
1

2
. (2.14)

Mackie’s proof [6, p.11] is expanded and shown to be rigorous in [2], because in a later
paper (Johnstone and Mackie [10]) doubt is cast on the inequality. (The later paper contains a
heuristic formula for the contact angle that is contradicted by (2.14) for values of α near 1/2.)

2.3. AN INTEGRAL EQUATION

The integral equation to be presented here resembles that used by Dobrovol’skaya [4] for
numerical work and was suggested to McLeod and Fraenkel by her paper. However, the
present integral equation differs from Dobrovol’skaya’s in details of the mapping t �→ z,
in its use of a logarithmic potential and in that the contact angle πβ is prescribed.

The set {t ∈ C | Im t > 0}, where Im denotes the imaginary part, is to be mapped
conformally onto the set � in the z-plane by a function ẑ. The mapping is to be as in Figure 2
and ẑ is to be continuous on {t | Im t ≥ 0, t �= 0}. We assume that

0 < α <
1

2
, 0 < β <

1

4
; (2.15a,b)

the first on physical grounds, the second for reasons that will be explained after (2.26). Let

q(t) := − 1

π
ϑ(a(t)), 0 < t ≤ 1, (2.16)

where ϑ is as in (2.12) and t ∈ (0, 1] labels points of CB in the t-plane; we have assumed
existence of a decreasing function t �→ a. Then 0 < q(t) < 1 for 0 < t ≤ 1 if CB is as in
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Figure 2. The domain � in the z-plane and its images in the t-plane and s-plane.

Figure 1; also,

q(0) = 0, q(1) = 1

2
+ α − β ; (2.17a,b)

the first by (2.10b) and the definition of q, the second because at the contact point B in the
z-plane the angles πq(1), π/2 − πα and πβ must add up to π . We demand that

q ∈ C[0, 1] ∩ C1[0, 1), (2.18a)

0 ≤ q ′(t) ≤ A(1 − t)−1+µ for t ∈ [0, 1), (2.18b)

where A and µ are positive constants and µ < 1.
Define the complex-valued Cauchy-Poisson integral of πq by

(Pq)(t) :=
∫ 1

0

q(τ)

τ − t
dτ (Im t ≥ 0, t �= 1), (2.19)

limiting values, as Im t ↓ 0, being understood when t is real and in [0, 1). The map ẑ,
constructed by a slight extension of the principles of the Schwarz-Christoffel transformation,
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is defined by

ẑ(t) := −i − iM
∫ t

∞
E(τ)dτ (Im t ≥ 0, t �= 0), (2.20a)

where

E(t) := e−iπα(t − 1)−1/2+αt−3/2 exp{−(Pq)(t)}, (2.20b)

arg t and arg (t − 1) being restricted to [0, π ]. The real, positive constant M will be defined
presently.

A companion formula for the complex velocity u−iv is obtained by first mapping {t | Im t >

0} conformally onto the open triangle W(�) in the plane of the Wagner function W and then
using the definition (2.13) of W in terms of u − iv. The result is

(u − iv)(t) := −iN
∫ t

0
F(τ)dτ (Im t ≥ 0), (2.21a)

where

F(t) := eiπ(1+α)(t − 1)−1−α exp{(Pq)(t)}, (2.21b)

arg (t −1) still being restricted to [0, π ]. The constants M and N are now evaluated by means
of the material-curve condition (2.8) at the point a = 0; that is, by ẑ(1) = (u + iv)(1). The
real and imaginary parts of this yield, after a contour integration of F ,

M =
∫ ∞

1 |F |(∫ ∞
1 |E|) (∫ 0

−∞|F |
) , N = 1∫ 0

−∞|F | , (2.22)

where the integrals are along the real axis.
In [2] it is proved that, under the hypotheses (2.15) and (2.18), the formulae (2.20) to (2.22)

imply that conditions (I) to (IV) and (2.9) are satisfied.
It remains to incorporate the material-curve condition (2.8) for 0 < a < ∞ (it is already

satisfied for a = 0 by (2.22)). To this end, the logarithmic potential of πq ′ is defined by

(Lq ′)(t) :=
∫ 1

0
log

1

|τ − t| q ′(τ )dτ, t ∈ IR; (2.23)

condition (2.18b) ensures that Lq ′ is uniformly Hölder continuous on IR. Integration by parts
and (2.17b) show that on the real axis, punctured at t = 1,

∫ 1

0

q(τ)

τ − t
dτ =

(
1

2
+ α − β

)
log |t − 1| + (Lq ′)(t), t ∈ IR\{1}, (2.24)

where the Cauchy principal value is used on the left-hand side when t ∈ (0, 1). It is also
proved in [2] that Equation (2.8) for 0 < a < ∞ is equivalent to the integral equation

q ′(t) = J (q ′)
(1 − t)−1/2−β exp{(Lq ′)(t)}∫ 1

t
(1 − τ)−1+βτ−3/2 exp{−(Lq ′)(τ )}dτ

(0 < t < 1), (2.25)
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where

J (q ′) := 1

π

∫ ∞
1 (t − 1)−1+βt−3/2 exp{−(Lq ′)(t)}dt∫ ∞

1 (t − 1)−1/2−β exp{(Lq ′)(t)}dt
. (2.26)

Remarks. 1. Absence of α. We observe that the parameter α does not appear in (2.25) and
(2.26).

2. Necessity of the condition 0 < β < 1/4. In the denominator of (2.25), the integral exists
only if β > 0. Then

q ′(t) ∼ const. (1 − t)−1/2−2β as t ↑ 1, (2.27)

so that integrability of q ′(t) at t = 1 (that is, absence of infinite spiralling of the free boundary)
requires β < 1/4.

3. Convergence of the integrals defining J (q ′). It is not obvious from (2.26) that the
integrals there converge at infinity, but this is shown by the alternative form

J (q ′) = 1

π

∫ ∞
1 |E|∫ ∞
1 |F | = 1

π

∫ ∞
1 (t − 1)−1/2+αt−3/2 exp{−(Pq)(t)}dt∫ ∞

1 (t − 1)−1−α exp{(Pq)(t)}dt
, (2.28)

resulting from use of (2.24); we note that (Pq)(t) → 0 as t → ∞.

4. Reasons for prescribing β. Prescription of α would make it difficult to satisfy the
condition β < 1/4. On the other hand, Mackie’s inequality (2.14) ensures that α < 1/2
when β is prescribed; the condition α > 0 is satisfied by starting from β = 0, showing that
limβ→0 α(β) = 1/2 [3, p.528], and then building the condition α > 0 into the continuation
procedure. Another advantage is that, in the formulae for |E(t)| and |F(t)| on the real axis,
the logarithmic potential of πq ′ accompanying β is less singular than the Hilbert transform of
πq accompanying α.

5. A monotonicity property of the integral operator. We denote the right-hand member of
(2.25) by (Rq ′)(t) and regard R as an operator on all functions q ′ satisfying (2.18). Evidently
(Rq ′)(t) > 0, so that R strengthens on (0, 1) the condition q ′(t) ≥ 0 postulated in (2.18) and
corresponding to convexity of the free boundary. Here we record a further result of this kind.

Assume that q ∈ C2(0, 1) and Lq ′ ∈ C1(0, 1); the solutions in [2] have this additional
smoothness. It is proved in [2] and again in Theorem 3.3 below that,

if
d

dt

{
(1 − t)1/2+2βq ′(t)

} ≥ 0 for all t ∈ (0, 1), (2.29)

then
d

dt

{
(1 − t)1/2+2β(Rq ′)(t)

}
> 0 for all t ∈ (0, 1). (2.30)

It follows that, if a solution of q ′ = Rq ′ satisfies (2.29) at β = β∗, say, and if q ′ and q ′′ vary
continuously as β is varied, then strict inequality in (2.29) not only occurs at β∗ but must be
conserved as β varies. In [2] and [3] solutions are constructed for small β that satisfy (2.29)
with strict inequality; then (2.30) and a continuation procedure (based on Leray-Schauder
degree) ensure that this property is conserved as β is increased.



228 L.E. Fraenkel and G. Keady

3. The preferred form of the integral equation

Remark 5 of Section 2.3 suggests that we should pursue not q ′ but the function with values
(1 − t)1/2+2βq ′(t). Moreover, description of this function for t ↑ 1 is easier with a new co-
ordinate. It will also be convenient to have a logarithmic potential that vanishes at the contact
point B. Accordingly, we let

b := 2

1 − 4β

(
0 < β <

1

4
, hence 2 < b < ∞

)
, (3.1)

s := {e−iπ (t − 1)}1/b (0 ≤ arg(t − 1) ≤ π) , (3.2a)

equivalently,

t = 1 − sb
(
−π

b
≤ arg s ≤ 0

)
; (3.2b)

and define

h(s) := (1 − t)1/2+2βq ′(t) (s real, 0 < s ≤ 1), (3.3)

(Mh)(s) := (Lq ′)(1) − (Lq ′)(t) (t ∈ IR ). (3.4)

Note that q ′(t)dt = −bh(s)ds. The conformal map (3.2) is illustrated in Figure 2; the point
s = 0 is the image of t = 1 and of the contact point in the z-plane, while s = 1 is the image
of t = 0 and of infinity in the z-plane. The integral equation (2.25) becomes

h(s) = K(h)
exp{−(Mh)(s)}

bβs−bβ
∫ s

0 σ bβ−1(1 − σ b)−3/2 exp{(Mh)(σ )}dσ
, 0 < s < 1, (3.5)

where

(Mh)(s) := b

∫ 1

0
log

∣∣∣∣s
b − σ b

σ b

∣∣∣∣ h(σ )dσ, (3.6)

K(h) := β

π

∫ ∞
0 rbβ−1(1 + rb)−3/2 exp{(MBAh)(r)}dr∫ ∞

0 rb/2−bβ−1 exp{−(MBAh)(r)}dr
, (3.7)

(MBAh)(r) := b

∫ 1

0
log

rb + σ b

σ b
h(σ )dσ. (3.8)

In (3.7) and (3.8) we have set s = re−iπ/b . The wedge angle 2πα is to be found a posteriori
from

1

2
+ α − β = q(1) = b

∫ 1

0
h(s)ds. (3.9)

Notation. Dependence on β will be made explicit, where this seems helpful, by the symbol
h(.;β), which need not denote a single function h for given β.

Following [2], we consider solutions (β, h) with h in the real Banach space Y defined by

Y := {g : [0, 1] → IR | g(1) = 0, Wg′ ∈ C[0, 1]}, (3.10a)
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W(s) := (1 − s)1/2, (3.10b)

‖ g | Y ‖:= max
0≤s≤1

2W(s) |g′(s)| , (3.10c)

where W(1)g′(1) := lims↑1 W(s)g′(s) both in this definition and in similar remarks through-
out the paper.

If h ∈ Y , then (Mh)(0) = 0 and certainly Mh ∈ C[0, 1], so that
∫ s

0
σ bβ−1(1 − σ b)−3/2 exp{(Mh)(σ )}dσ ∼ sbβ

bβ
as s ↓ 0 ;

consequently the right-hand member of (3.5) tends to K(h) as s ↓ 0. Thus

h(0) = K(h) for a solution (β, h) ∈ (0, 1/4) × Y of (3.5). (3.11)

Here is a set of a priori results from [2]. Proofs are included only where they are short
or where they lead to the bounds (3.18) and (3.19), which will be needed in Section 4. We
assume that 2 < b < ∞.

Lemma 3.1. If g ∈ Y , then Mg ∈ C1,1/3[0, 1]; that is, the derivative (Mg)′ is Hölder
continuous on [0, 1] with exponent 1/3.

Lemma 3.2. If g ∈ Y and g′(s) ≤ 0 in (0, 1), which implies that g′(0) ≤ 0 and that g(s) ≥ 0
on [0, 1], then

(Mg)′(s) ≥ πb
(

cot
π

b

)
g(s) for 0 ≤ s ≤ 1. (3.12)

The inequality is strict at points s ∈ (0, 1) such that g(s) > 0.

Proof. By the continuity of (Mg)′ on [0, 1], we need consider only points s ∈ (0, 1). Then,
with P

∫
denoting the Cauchy principal value of an integral,

(Mg)′(s) = b2sb−1P

∫ 1

0

g(σ )

sb − σ b
dσ (0 < s < 1)

= b2sb−1 lim
ε↓0

{∫ s−ε

0

g(σ )

sb − σ b
dσ −

∫ 1

s+ε

g(σ )

σ b − sb
dσ

}

≥ b2sb−1g(s)P

∫ 1

0

1

sb − σ b
dσ

= b2g(s)P

∫ 1/s

0

1

1 − ρb
dρ

≥ b2g(s)P

∫ ∞

0

1

1 − ρb
dρ

= πb
(

cot
π

b

)
g(s)

by contour integration. We note that, when the interval (0, 1/s) is replaced by (0,∞), there is
strict inequality if g(s) > 0. �



230 L.E. Fraenkel and G. Keady

Notation. With an eye on the right-hand member of (3.5), we define operators Q and T by

(Qg)(s) := bβs−bβ

∫ s

0
σ bβ−1(1 − σ b)−3/2 exp{(Mg)(σ )} dσ (0 < s < 1), (3.13)

(T g)(s) := exp{−(Mg)(s)}/(Qg)(s) (0 < s < 1). (3.14)

Theorem 3.3. (Monotonicity property of T .) If g ∈ Y and g′(s) ≤ 0 in (0, 1), then (T g)′(s) <

0 in (0, 1).

Proof. Setting σ = sρ in (3.13) and then differentiating, one obtains

(Qg)′(s) = bβ

∫ 1

0
ρbβ−1{1 − (sρ)b}−3/2 exp{(Mg)(sρ)}

[
3

2
b(sρ)b−1{1 − (sρ)b}−1 + (Mg)′(sρ)

]
ρ dρ.

(3.15)

Also,

(T g)′(s) = −exp{−(Mg)(s)}
(Qg)(s)

{
(Mg)′(s) + (Qg)′(s)

(Qg)(s)

}
. (3.16)

Since (Mg)′(s) ≥ 0 on [0, 1] by Lemma 3.2, it follows from (3.15) that (Qg)′(s) > 0 in
(0, 1) ; then from (3.16) that (T g)′(s) < 0 in (0, 1). �
Lemma 3.4. If h ∈ Y and h′(s) ≤ 0 in (0, 1) and (β, h) is a solution of (3.5), then

(1 − sb)3/2 exp{−2(Mh)(s)} ≤ h(s)

h(0)
≤ exp{−(Mh)(s)} for 0 ≤ s ≤ 1. (3.17)

Proof. Let s ∈ (0, 1). Since both (1−σ b)−3/2 and exp{(Mh)(σ )} are non-decreasing and since
both equal 1 at σ = 0, we have

(Qh)(s) ≤ bβs−bβ

∫ s

0
σ bβ−1(1 − sb)−3/2 exp{(Mh)(s)} dσ

= (1 − sb)−3/2 exp{(Mh)(s)},
and

(Qh)(s) ≥ bβs−bβ

∫ s

0
σ bβ−1 dσ = 1.

These two inequalities imply those in (3.17) for 0 < s < 1, since K(h) = h(0) by (3.11); we
may extend to [0, 1] by the continuity of h and of Mh on [0, 1]. �
Lemma 3.5. Under the hypotheses of Lemma 3.4,∫ s

0
h ≤ 1

B
log {1 + Bh(0)s} (0 ≤ s ≤ 1), (3.18)

and

h(s) ≤ 1

Bs
log {1 + Bh(0)s} (0 < s ≤ 1), (3.19)

where B := πb cot
π

b
.
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Proof. By Lemma 3.2 and (Mh)(0) = 0 we have

(Mh)(s) ≥ B

∫ s

0
h (0 ≤ s ≤ 1),

so that (3.17) yields

h(s)

h(0)
≤ exp{−B

∫ s

0
h}.

Equivalently,

dy

dx
≤ e−y, where x := Bh(0)s, y(x) := B

∫ s

0
h .

Integrating this inequality, with y(0) = 0, we obtain (3.18). Since h is non-increasing,
∫ s

0
h ≥ sh(s),

which yields (3.19). �

The next theorem is the main result of [2]. Unfortunately, its proof requires far more than
the preliminaries above. The first step is a demonstration that, for a solution (assumed to exist),
h(0;β) → ∞ as β → 0 and that, after the transformation

s∗ := h(0;β)s (0 ≤ s ≤ 1), h∗(s∗;β) := h(s;β)

h(0;β)
, (3.20)

any solution (β, h) with h′(s) < 0 in (0, 1) has the limiting behaviour

h∗(s∗;β) → 1

1 + π2s2∗
as β → 0 with s∗ fixed. (3.21)

(The route to (3.21) is sketched in [3, p.528]. Note that s → 0 as β → 0 with s∗ fixed; there
is a boundary layer near s = 0 as β → 0.) It is a matter of some length to pass from (3.21)
to the existence and uniqueness of exact solutions for small β. Thereafter, the continuation
to larger values of β (by means of Leray- Schauder degree) also requires a long sequence of
inequalities.

Theorem 3.6. In the product space (0, 1/4)×Y there is a connected set � of solutions (β, h)

as follows.
(i) The pair (β, h) satisfies (3.5); h(0) = K(h), h(1) = 0 and (1 − s)

1
2 h′(s) < 0 on [0, 1]

(the limiting value being taken at s = 1).
(ii) Mh ∈ C1,1/3[0, 1] with (Mh)(0) = 0 and (Mh)′(s) > 0 on [0, 1].

(iii) For the wedge angle 2πα, we have

α(β, h) := −1

2
+ β + b

∫ 1

0
h ∈ (0,

1

2
− β) (3.22)

and α(β, h) → 1/2 as β → 0. Every value of α in the interval (0, 1/2) occurs at least
once in �.
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(iv) For each sufficiently small β, there is only one solution as in (i); it is described by

h(s) ∼
√

2β

π

√
1 − s2

2β + s2
(0 ≤ s ≤ 1),

α(β, h) ∼ 1

2
− √

2β,




as β → 0. (3.23)

Remarks. 1. The approximation (3.23) fails to show that h′(0) < 0 because this derivative
is of smaller order in β at s = 0.

2. Due to an inexcusable aberration, Theorem 2.1 in [3], which corresponds to the present
Theorem 3.6, asserts more than has been proved for values of β that are not small.

4. The proof that β < 1/4

4.1. PRELIMINARIES

Let � be the connected set of solutions described in Theorem 3.6. In order to prove that

β := sup{β | (β, h) ∈ �} <
1

4
, (4.1)

we shall assume the contrary: that Equation (3.5) admits solutions (βm, hm) as in Theorem 3.6
for a sequence (βm) such that βm → 1/4. It will follow that, under this assumption, there is a
subsequence such that

α(βm(n), hm(n))) → −1

4
as n → ∞. (4.2)

This is a strong contradiction relative to the interval (0, 1/2) in which α is assumed to be; it
would seem to suggest that β is significantly less than 1/4.

In view of (3.1), b → ∞ as β → 1/4. A preliminary re-scaling is necessary because the
logarithmic potential, as it stands in (3.6), cannot tend to a limiting function as b → ∞ and
because Lemma 4.2 will show that h(0;β) → ∞ as β → 1/4. (We noted before (3.20) that
this is also the case for β → 0.) Therefore we make the transformation

ξ := b2h(0;β)s (0 ≤ s ≤ 1), ĥ(ξ ;β) := h(s;β)

h(0;β)
, (4.3)

and define

L = L(b) := b2h(0;β). (4.4)

(No confusion with the operator L in (2.23) is possible.) It follows that

(Mĥ)(ξ) := (Mh)(s) = 1

b

∫ L

0
log

∣∣∣∣∣
(

ξ

ξ ′

)b

− 1

∣∣∣∣∣ ĥ(ξ ′) dξ ′, (4.5)

and that the integral equation (3.5) becomes, since K(h) = h(0),

ĥ(ξ ) = exp{−(Mĥ)(ξ)}
bβξ−bβ

∫ ξ

0 xbβ−1[1 − (x/L)b]−3/2 exp{(Mĥ)(x)} dx
, 0 < ξ < L. (4.6)
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The x in (4.6) is obviously a dummy variable for ξ , quite distinct from the x in (2.7a). Equation
(3.9) becomes

1

4
+ α + 1

2b
= 1

b

∫ L

0
ĥ(ξ ;β)dξ ; (4.7)

we wish to show that the right-hand member of this tends to zero for some sequence as b →
∞.

Assumption 4.1. Assume that β = 1/4.Thus there is a sequence of solutions (βm, hm) as in
Theorem 3.6 such that βm → 1/4 as m → ∞. Let bm := 2/(1−4βm) and Lm := L(bm). Then
there is a sequence of solutions (βm, ĥm) of (4.6) such that, for each m ∈ N := {1, 2, 3, . . .}
and all ξ ∈ [0, Lm],

ĥm(0) = 1, ĥm(Lm) = 0 and

(
1 − ξ

Lm

)1/2

ĥ′
m(ξ) < 0, (4.8)

(Mĥm)(0) = 0 and (Mĥm)′(ξ) > 0, (4.9)

αm ∈ (0,
1

2
− βm), (4.10)

where αm is defined by (4.7) with b = bm and ĥ = ĥm.

Notation.

cb := π

b
cot

π

b
= 1 − 1

3

(π

b

)2 − 1

45

(π

b

)4 − . . . (b > 2). (4.11)

Lemma 4.2. With the abbreviations ĥ := ĥm, b := bm and L := Lm, we have for each
m ∈ N and b > 2,

∫ ξ

0
ĥ ≤ 1

cb

log(1 + cbξ) (0 ≤ ξ ≤ L), (4.12)

ĥ(ξ ) ≤ 1

cbξ
log(1 + cbξ) (0 < ξ ≤ L), (4.13)

and

L >
1

cb

{
exp

(
1

4
bcb

)
− 1

}
> exp

(
πb

16

)
− 1 if b ≥ 4. (4.14)

Proof. The inequalities (4.12) and (4.13) are immediate consequences of Lemma 3.5 and the
transformation (4.3). To prove (4.14), we use (4.7) and (4.12):

1

4
+ 1

2b
= −α + 1

b

∫ L

0
ĥ <

1

bcb

log(1 + cbL),

whence

1 + cbL > exp

(
1

4
bcb + 1

2
cb

)
. �
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Note that we are still far from proving that the right-hand member of (4.7) tends to zero
for some sequence as b → ∞. The lower bound for h(s)/h(0) in Lemma 3.4 seems to be too
coarse to be useful in this context.

4.2. THE FINAL PART OF THE PROOF

The following proposition will be proved in Section 4.3. The first step of the proof is success-
ive application of Helly’s selection theorem to the sequence (ĥm) on the intervals [0, k], k ∈
N.

Notation. T̂ will denote the operator, analogous to the T in (3.14), that allows the right-

hand member of the integral equation (4.6) to be written
(
T̂ ĥ

)
(ξ).

Proposition 4.3. (i) Under Assumption 4.1 there exist both a subsequence

(gn) := (ĥm(n))
∞
n=1

of (ĥm) and a limit function g such that gn(ξ) → g(ξ) at each fixed ξ ∈ [0,∞) as n → ∞
and bm(n) → ∞. Moreover,

g(0) = 1, g is non-increasing, g(ξ) ≥ 0. (4.15)

(ii) At each fixed ξ ∈ [0,∞), the logarithmic potentials and right-hand members of (4.6)

have the behaviour (as n → ∞)

(Mgn)(ξ) →
∫ ξ

0
log

ξ

ξ ′ g(ξ ′)dξ ′ =: (M∞g)(ξ), (4.16)

(T̂ gn)(ξ) → exp{−2(M∞g)(ξ)}. (4.17)

(iii) The convergence is uniform on each compact subset of [0,∞).

(iv) The unique solution of

g(ξ) = exp{−2(M∞g)(ξ)} with g(0) = 1 (4.18a)

is

g(ξ) = (1 + ξ)−2 (0 ≤ ξ < ∞). (4.18b)

(v) Every convergent subsequence of (ĥm) converges to g(ξ) at each fixed ξ ∈ [0,∞).

Notation. The functions gn are now extended by

gn(ξ) := 0 for ξ > Lm(n). (4.19)

Remark. Of course, even uniform convergence on [0,∞) would not imply equality of
lim

∫ ∞
0 gn and

∫ ∞
0 g. But we now have the means to find an upper bound for

∫ ∞
0 gn.

Lemma 4.4. For δ ∈ (0, 1/6) there is a number N1(δ) such that

(Mgn)(ξ) ≥ (1 − 3δ) log(1 + ξ) for all ξ ≥ 0 and n > N1(δ). (4.20)
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Proof. (i) Fix δ ∈ (0, 1/6) and let ξ0 := (1 − 2δ)/δ. Since gn → g uniformly on [0, ξ0], there
is a number N0(δ) such that, for n > N0(δ),

gn(ξ) ≥ (1 − δ)(1 + ξ)−2 if 0 ≤ ξ ≤ ξ0,

whence

Gn(ξ) :=
∫ ξ

0
gn ≥

{
(1 − δ)ξ/(1 + ξ) if 0 ≤ ξ ≤ ξ0,

1 − 2δ if ξ ≥ ξ0.
(4.21)

(ii) We decompose the logarithmic potential Mgn into dominant and small parts. Define

κ(η; b) :=




1

b
log

1

1 − ηb
if 0 ≤ η < 1,

1

b
log

1

1 − η−b
if 1 < η < ∞;

(4.22)

then

Mgn = M∞gn − Mκgn , (4.23)

where

(M∞gn)(ξ) :=
∫ ξ

0
log

ξ

ξ ′ gn(ξ
′)dξ ′ =

∫ ξ

0

Gn(ξ
′)

ξ ′ dξ ′, (4.24)

(Mκgn)(ξ) :=
∫ ∞

0
κ

(
ξ ′

ξ
; b

)
gn(ξ

′)dξ ′ , (4.25)

and where b = bm(n). By (4.21) and (4.24),

(M∞gn)(ξ) ≥



(1 − δ) log (1 + ξ) if 0 ≤ ξ ≤ ξ0,

(1 − δ) log (1 + ξ0) + (1 − 2δ) log
ξ

ξ0
if ξ ≥ ξ0,

and this last is

> (1 − 2δ)

{
log(1 + ξ) + log

(
ξ

1 + ξ

1 + ξ0

ξ0

)}
≥ (1 − 2δ) log (1 + ξ),

so that

(M∞gn)(ξ) ≥ (1 − 2δ) log(1 + ξ) for n > N0(δ) and 0 ≤ ξ < ∞. (4.26)

(iii) In order to bound Mκgn, we first observe that, for b ≥ 4,

∫ 1

0

κ(η; b)

η
dη +

∫ ∞

1
κ(η; b)dη = 1

b2

∫ 1

0
log

1

1 − y
(y−1 + y−1−1/b)dy ≤ A0

b2
,

where

A0 :=
∫ 1

0
log

1

1 − y
(y−1 + y−5/4)dy.
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By (4.13) and (4.19),

0 ≤ gn(ξ) ≤ 4 log(1 + ξ)

πξ
(0 < ξ < ∞, b = bm(n) ≥ 4).

This upper bound is a decreasing function of ξ , so that

(Mκgn)(ξ) = ξ

∫ ∞

0
κ(η; b) gn(ξη)dη

≤ 4

π
ξ

{∫ 1

0
κ(η; b)

log(1 + ξ)

ξη
dη +

∫ ∞

1
κ(η; b)

log(1 + ξ)

ξ
dη

}

≤ 4A0

πb2
log(1 + ξ) (b = bm(n) ≥ 4)

< δ log(1 + ξ) (4.27)

if n is sufficiently large, say n > N1(δ) ≥ N0(δ). The result (4.20) now follows from (4.23),
(4.26) and (4.27). �

Lemma 4.5. For δ ∈ (0, 1/6) there is a number N2(δ) such that
∫ ∞

0
gn <

1 + δ

1 − 6δ
for n > N2(δ). (4.28)

Proof. Fix δ at the value used in Lemma 4.4. With β = βm(n), b = bm(n), L = Lm(n) and
0 < ξ < L, also with n > N1(δ),

Q̂n(ξ) := bβξ−bβ
∫ ξ

0 xbβ−1[1 − (x/L)b]−3/2 exp{(Mgn)(x)}dx

> bβξ−bβ
∫ ξ

0 xbβ−1(1 + x)1−3δ dx

> bβξ−bβ(1 + ξ)−3δ
∫ ξ

0 xbβ−1 (1 + x) dx

= (1 + ξ)−3δ

(
1 + bβ

bβ + 1
ξ

)

>
bβ

bβ + 1
(1 + ξ)1−3δ.

We choose n so large that (bβ)−1 < δ, say n > N2(δ) ≥ N1(δ). Then

gn(ξ) = exp{−(Mgn)(ξ)}/Q̂n(ξ) < (1 + δ)(1 + ξ)−2+6δ (4.29)

for 0 < ξ < ∞, since gn(ξ) = 0 for ξ ≥ Lm(n). This inequality implies (4.28). �

Theorem 4.6. The subsequence (gn) of (ĥm) has the property that

α(βm(n), gn) → −1

4
as n → ∞, (4.30)

which contradicts (4.10). Hence β < 1/4.
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Proof. The result (4.30) is an immediate consequence of (4.7) and (4.28). �

4.3. PROOF OF PROPOSITION 4.3

Lemma 4.7. Under Assumption 4.1 there exist a subsequence (gn) := (ĥm(n)) and a limit
function g such that gn(ξ) → g(ξ) at each fixed ξ ∈ [0,∞) as n → ∞ and such that g

satisfies the conditions in (4.15).

Proof. We apply Helly’s selection theorem [11, p.342] successively to intervals [0, k], k ∈ N.
The subsequence for [0, 1] is extracted from (ĥm); that for [0, k + 1] is extracted from that for
[0, k]. Finally we diagonalize. The properties of g in (4.15) are inherited from those of each
gn. �

Notation. The following definitions will be useful.

K(η; b) := 1

b
log

∣∣η−b − 1
∣∣ , η ∈ (0,∞)\{1}, (4.31)

K∞(η) :=
{

log(1/η) if 0 < η ≤ 1,

0 if η > 1,
κ(η; b) :=




1

b
log

1

1 − ηb
if 0 ≤ η < 1,

1

b
log

1

1 − η−b
if η > 1,

(4.32)

K(η) :=



log (1/η) if 0 < η ≤ 2−1/4,

log(1/η) + κ(η; 4) if 2−1/4 < η < 1,

κ(η; 4) if η > 1.

(4.33)

We observe that, with gn(ξ) = 0 for ξ > Lm(n) and with b = bm(n),

(Mgn)(ξ) =
∫ ∞

0
K

(
ξ ′

ξ
; b

)
gn(ξ

′)dξ ′ (0 < ξ < ∞)

= ξ

∫ ∞

0
K(η; b) gn(ξη) dη, (4.34)

and that

K(η; b) = K∞(η) − κ(η; b) on (0,∞)\{1}, (4.35)

|K(η; b)| ≤ K(η) on (0,∞)\{1}, if b ≥ 4. (4.36)

As in (4.24) and (4.25), M∞ and Mκ are the integral operators with kernels K∞(ξ ′/ξ) and
κ(ξ ′/ξ ; b), respectively. The dependence on b of M and Mκ will be left implicit.

Lemma 4.8. (Mgn)(ξ) → (M∞g)(ξ) at each fixed ξ ∈ [0,∞) as n → ∞.

Proof. We apply the Lebesgue dominated convergence theorem to the form (4.34) of Mgn,
assuming that b = bm(n) ≥ 4. Since 0 ≤ gn(ξη) ≤ 1, we have

|K(η; b)gn(ξη)| ≤ K(η) for η ∈ (0,∞)\{1},
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and the dominant function K ∈ L1(0,∞). There is convergence almost everywhere because

| K(η; b)gn(ξη) − K∞(η)g(ξη) | = |{K(η; b) − K∞(η)}gn(ξη) + K∞(η){gn(ξη)

−g(ξη)}|
≤ κ(η; b) + K∞(η) | gn(ξη) − g(ξη) |,

which tends to zero as n → ∞ with η fixed in (0,∞)\{1}. �

Lemma 4.9. The set

E := { Mf | 4 ≤ b < ∞, f ∈ L∞(0,∞), ‖ f | L∞(0,∞) ‖ ≤ 1} (4.37)

of logarithmic potentials is relatively compact in the Banach space C[0, k] for fixed k ∈ N.

Proof. (i) In view of the Arzelà-Ascoli theorem, we must prove that E is bounded in C[0, k]
and is equicontinuous on [0, k]. The bound will be, once continuity of Mf is established,

‖ Mf | C[0, k] ‖ := max
0≤ξ≤k

| (Mf )(ξ) | ≤ k ‖ K | L1(0,∞) ‖ .

(ii) In order to prove equicontinuity, we introduce a large number N , to be chosen presently,
and define

(Mf )1(ξ) := ∫ ∞
N

K

(
x

ξ
; b

)
f (x)dx,

(Mf )2(ξ) := 1

b

∫ N

0 log | ξ − x | f (x)dx,

(Mf )3(ξ) := 1

b

∫ N

0 log
ξb − xb

xb(ξ − x)
f (x)dx.

Evidently (Mf )(ξ) is the sum of these three. For Mf ∈ E and ξ ∈ [0, k],

| (Mf )1(ξ) | = ξ

∣∣∣∣
∫ ∞

N/ξ

K(η; b) f (ξη)dη

∣∣∣∣ ≤ k

∫ ∞

N/k

K.

Given ε > 0, we choose N = N(ε) to be so large that |(Mf )1(ξ)| < ε/3 and fix N at this
value for the remainder of the proof.

(iii) The next step is to bound the derivatives (Mf )′
2 and (Mf )′

3 in the Lebesgue space
L2(0, k). Now

(Mf )′
2(ξ) = 1

b
P

∫ N

0

f (x)

ξ − x
dx,

and the Hilbert transform L2(IR) → L2(IR) is an isometry (Titchmarsh [12, p.123]); hence, if
we allow ξ ∈ IR for the moment,

‖ (Mf )′
2 | L2(IR) ‖ ≤ π

b
‖ f | L2(0, N) ‖ ≤ π

4
N1/2. (4.38)

Next,

(Mf )′
3(ξ) =

∫ N/ξ

0
S(η; b) f (ξη)dη with S(η; b) := 1

b

(
b

1 − ηb
− 1

1 − η

)
,
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and a coarse calculation shows that

‖ S(.; b) | L3/2(0,∞) ‖ ≤
(

3

2

)2/3

for b ≥ 4,

whence

∣∣(Mf )′
3(ξ)

∣∣ ≤‖ S(.; b)|L3/2(0,∞) ‖
{∫ N/ξ

0
|f (ξη)|3dη

}1/3

≤
(

3

2

)2/3 (
N

ξ

)1/3

,

‖ (Mf )′
3|L2(0, k) ‖≤

(
3

2

)2/3

N1/3 (
3k1/3)1/2

. (4.39)

(iv) Let (Mf )5 := (Mf )2 + (Mf )3. By (4.38) and (4.39) there is an absolute constant A1

such that

‖ (Mf )′
5 | L2(0, k) ‖ ≤ A1N

1/3(N1/6 + k1/6).

If ξ and ξ + δ (with δ > 0) are in [0, k] and ε > 0 is given, then

| (Mf )(ξ + δ) − (Mf )(ξ) | = | (Mf )1(ξ + δ) − (Mf )1(ξ) + ∫ ξ+δ

ξ
(Mf )′

5 |
<

2ε

3
+ ‖ (Mf )′

5 | L2(0, k) ‖ δ1/2

< ε

independently of f and ξ , if δ = δ(ε) is chosen sufficiently small. �
Lemma 4.10. There is uniform convergence of the logarithmic potentials on each compact
subset of [0,∞). In other words, for each fixed k ∈ N,

‖ M∞g − Mgn | C[0, k] ‖ → 0 as n → ∞.

Proof. Assume that the claim is false. Then there is a subsequence (mj) := (
Mgn(j)

)
such

that, for some k ∈ N and some constant c,

‖ M∞g − mj | C[0, k] ‖ ≥ c > 0 for all j ∈ N . (4.40)

Since each mj is in the relatively compact subset E defined by (4.37), there exist a sub-
sequence (mj(r)) and an element m0 of C[0, k] such that

‖ m0 − mj(r) | C[0, k] ‖ → 0 as r → ∞. (4.41)

Then m0 = M∞g because (Mgn)(ξ) → (M∞g)(ξ) at each fixed ξ ; thus (4.41) contradicts
(4.40). �
Lemma 4.11. For each fixed k ∈ N, T̂ gn → exp{−2M∞g} in C[0, k] and gn → g in
C[0, k].
Proof. (i) Convergence of (T̂ gn) in C[0, k]. Let en(ξ) := exp{(Mgn)(ξ)} and e∞(ξ) :=
exp{(M∞g)(ξ)}. By Lemmas 4.9 and 4.10, en and e∞ are in C[0, k] and en → e∞ in C[0, k].
Now T̂ is so defined that the right-hand member of (4.6) is (T̂ ĥ)(ξ); therefore we recall the
lower bound (4.14) for L = Lm(n) and observe that

[
1 − (x/L)b

]−3/2
en(x) − e∞(x) = {[1 − (x/L)b]−3/2 − 1}en(x) + {en(x) − e∞(x)}

→ 0 uniformly over x ∈ [0, k].
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It now suffices to prove that, as b = bm(n) → ∞,

bβξ−bβ

∫ ξ

0
xbβ−1 e∞(x)dx → e∞(ξ),

equivalently, that

bβξ−bβ

∫ ξ

0
xbβ−1 {e∞(ξ) − e∞(x)}dx → 0,

uniformly over ξ ∈ [0, k].
Let ε > 0 be given. Since e∞ is uniformly continuous on [0, k], there is a δ > 0,

independent of ξ and x in [0, k], such that

|e∞(ξ) − e∞(x)| <
ε

2
for ξ − δ < x ≤ ξ,

whence∣∣∣∣ bβξ−bβ

∫ ξ

ξ−δ

xbβ−1{e∞(ξ) − e∞(x)}dx

∣∣∣∣ <
ε

2
.

Next,
∣∣∣∣ bβξ−bβ

∫ ξ−δ

0
xbβ−1{e∞(ξ) − e∞(x)}dx

∣∣∣∣ ≤ ‖ e∞ | C[0, k] ‖
(

k − δ

k

)bβ

<
ε

2

if bm(n)βm(n) is sufficiently large.

(ii) Convergence of (gn) in C[0, k]. The sequence (gn) is a Cauchy sequence in C[0, k]
because gn = T̂ gn; also, gn(ξ) → g(ξ). �

Recall that gn(0) = 1 and gn = T̂ gn for each n; also, from (4.16) or (4.24), that

(M∞g)(ξ) =
∫ ξ

0
log

ξ

ξ ′ g(ξ ′)dξ ′ =
∫ ξ

0

G(ξ ′)
ξ ′ dξ ′, where G(ξ) :=

∫ ξ

0
g. (4.42)

Therefore Lemma 4.11 implies that, for each k ∈ N,

g(ξ) = exp

{
−2

∫ ξ

0

G(ξ ′)
ξ ′ dξ ′

}
for 0 < ξ ≤ k,

g ∈ C[0, k], g(0) = 1.


 (4.43)

Let y(ξ) :=
∫ ξ

0

G(ξ ′)
ξ ′ dξ ′; then (4.43) becomes

d

dξ

(
ξ

dy

dξ

)
= e−2y (0 < ξ ≤ k),

y ∈ C1[0, k] ∩ C2(0, k], y(0) = 0, y′(0) = 1.


 (4.44)
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Lemma 4.12. The unique solution of (4.44) is y(ξ) = log(1 + ξ), whence g(ξ) = (1 + ξ)−2.

Proof. That log(1 + ξ) satisfies (4.44) is verified by direct substitution. The most elementary
uniqueness theorem [13, p.12]) does not apply directly here because ξ = 0 is a singular point,
but the method can be adapted to the present case.

Let y0(ξ) := log(1 + ξ) and assume that y0 + z is also a solution. Then

d

dξ

(
ξ

dz

dξ

)
= e−2y0{e−2z − 1} (0 < ξ ≤ k),

z ∈ C1[0, k] ∩ C2(0, k], z(0) = 0, z′(0) = 0.


 (4.45)

It follows that, for 0 ≤ ξ ≤ k,

z(ξ) =
∫ ξ

0

1

t

{∫ t

0
F(s)ds

}
dt, where F(ξ) := e−2z(ξ) − 1

(1 + ξ)2
. (4.46)

Let λ := ‖ z | C[0, k] ‖ ; then

|F(ξ) | ≤ A | z(ξ) | ≤ B, where A := e2λ − 1

λ
, B := e2λ − 1.

We use (4.46) in the traditional manner to obtain successive inequalities.
First,∣∣∣∣

∫ t

0
F

∣∣∣∣ ≤ Bt ⇒ | z(ξ) | ≤ Bξ.

Next,

| F(ξ) | ≤ ABξ ⇒
∣∣∣∣
∫ t

0
F

∣∣∣∣ ≤ ABt2

2
⇒ | z(ξ) | ≤ ABξ 2

4
.

An easy induction now shows that

| z(ξ) | ≤ An−1Bξn

(n!)2
(0 ≤ ξ ≤ k) for every n ∈ N ,

which implies that z(ξ) ≡ 0.

Lemmas 4.7 and 4.10 to 4.12 prove (i) to (iv) of Proposition 4.3. Part (v) of the proposition
is true because everything that we have said about the subsequence (gn) is equally true for any
subsequence that converges pointwise on [0,∞).

5. The boundary-layer equation

5.1. THE EQUATION AND ITS RELEVANCE TO THREE LIMITING CASES

We return to Equations (4.5), (4.6) and (4.7), which are exact. At first glance it might seem
that the functional K(h), which weighed down the earlier form (3.5) of the integral equation,
has departed; but this is not the case. The functional L := b2h(0) (the value of which is
unknown a priori) is present in (4.5) to (4.7), and we recall that h(0) = K(h) for a solution.
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However, whenever it is legitimate to replace h(0;β), and hence L(b), by infinity, there is a
real simplification: one then has the boundary-layer equation

h̃(ξ ) = exp{−(Mh̃)(ξ)}
bβ ξ−bβ

∫ ξ

0 xbβ−1 exp{(Mh̃)(x)}dx
, 0 < ξ < ∞, (5.1)

where

(Mh̃)(ξ) := 1

b

∫ ∞

0
log

∣∣∣∣∣
(

ξ

ξ ′

)b

− 1

∣∣∣∣∣ h̃(ξ ′) dξ ′. (5.2)

We have changed ĥ to h̃ because solutions h̃ of (5.1) can only be limiting forms of solutions
ĥ of (4.6). The corresponding formula for the wedge angle is

1

4
+ α + 1

2b
= 1

b

∫ ∞

0
h̃. (5.3)

The substitution L = ∞ is, in fact, legitimate for three limiting cases, as follows.

(i) β → 0 (and hence b → 2). It is a result of [2], mentioned before (3.20) and exhibited in
(3.23), that h(0;β) → ∞ as β → 0. Here the difference between the transformations (3.20)
and (4.3) is unimportant: ξ = b2s∗ and ĥ(ξ ) = h∗(s∗). The result (3.21) tells us that both
re-scaled solutions of (3.5) and solutions of (5.1) have the behaviour

h̃(ξ ;β) → 1

1 + (πξ/4)2
as β → 0. (5.4)

(ii) β → 1/4 (and hence b → ∞ ). This is the subject of the present Section 4; the
factor b2 in the transformation (4.3) is now essential. We know from Lemma 4.2 that, under
Assumption 4.1,

h(0;β) ≥ 1

b2
{exp

(
πb

16

)
− 1} if b ≥ 4,

so that (under Assumption 4.1) h(0;β) → ∞ as β → 1/4 . Of course, Assumption 4.1 was
ultimately shown to be false, but the proof shows that solutions of (5.1) have the behaviour

h̃(ξ ;β) → 1

(1 + ξ)2
as β → 1

4
. (5.5)

When one uses (5.1) to pursue the number β0, and the limiting solution, corresponding to
α = 0, it is useful that limiting solutions of (5.1) are known explicitly both for β → 0 and for
β → 1/4.

(iii) α → 0. The connected set � of solutions (β, h), described in Theorem 3.6, is such that
every value α in the interval (0, 1/2) occurs at least once. Hence there are sequences (βn, hn)

in � such that

α(βn, hn) → 0 as n → ∞ . (5.6)

We now show that hn(0) → ∞ for such a sequence.
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Lemma 5.1. Let β, h and α = α(β, h) be as in Theorem 3.6. Then

12

π
α b exp {2b2h(0;β)} > 1 . (5.7)

Proof. We proceed from the identity h(0) = K(h), but make the integration by parts that
converts the logarithmic potential MBAh in (3.7) into a Hilbert transform of sorts. This is
analogous to the passage from (2.26) to (2.28). Defining

H(s) :=
∫ s

0
h,

(pBAH)(r) := b2
∫ 1

0

rb

rb + σ b

H(σ )

σ
dσ, (5.8)

we obtain

h(0) = K(h)

= β

π

∫ ∞
0 rbβ−1(1 + rb)−1+α−β exp{(pBAH)(r)}dr∫ ∞

0 rb/2−bβ−1(1 + rb)−1/2−α+β exp{−(pBAH)(r)}dr
.

(5.9)

It is useful to observe that the difference of the exponents bβ − 1 and b/2 − bβ − 1 is 2bβ −
b/2 = −1, so that the rôle of h(0) is changed by re-scaling as follows. Let

λ := h(0) and ρ := λr, θ := λσ, h̃(θ) := h(σ )

λ
, (5.10a)

H̃ (θ) :=
∫ θ

0
h̃(θ ′)dθ ′ = H(σ). (5.10b)

Then (5.8) and (5.9) become

(p̃BAH̃ )(ρ) := (pBAH)(r) = b2
∫ λ

0

ρb

ρb + θb

H̃ (θ)

θ
dθ , (5.11)

1 = β

π

∫ ∞
0 ρbβ−1[1 + (ρ/λ)b]−1+α−β exp{(p̃BAH̃ )(ρ)}dρ∫ ∞

0 ρb/2−bβ−1[1 + (ρ/λ)b]−1/2−α+β exp{−(p̃BAH̃ )(ρ)}dρ
. (5.12)

We calculate an upper bound for the right-hand member of (5.12). Since h̃(θ) ≤ 1, we have
H̃ (θ) ≤ θ and

(p̃BAH̃ )(ρ) ≤ b2λ .

Both exponents of [1 + (ρ/λ)b] are negative. For the numerator in (5.12) we use

1 + (ρ/λ)b ≥ 1 for 0 ≤ ρ ≤ λ,

1 + (ρ/λ)b > (ρ/λ)b for ρ > λ.

For the denominator we neglect the integral from ρ = 0 to ρ = λ and use

1 + (ρ/λ)b ≤ 2(ρ/λ)b for ρ ≥ λ.
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The important thing is that, in the denominator of (5.12), the integrand behaves like ρ−1−bα as
ρ → ∞; this contributes the factor α in the result

1 <
α exp (2b2λ) 21/2+α−β

πλ

(
1 + β

1 − α

)

of our calculation. From
∫ 1

0 h < h(0) = λ and (3.9) we have

1

λ
<

b

1/2 + α − β
,

so that finally

1 <
αb exp(2b2λ)

π

21/2+α−β

1/2 + α − β

(
1 + β

1 − α

)
, (5.13)

which yields (5.7) when the inequalities 0 < α < 1/2 and 0 < β < 1/4 are used. �

Theorem 5.2. The functional hn(0) → ∞ as n → ∞ whenever α(βn, hn) → 0. �

Proof. Consider the inequality (5.7). Let b := 2/(1 − 4β); then Theorem 4.6 states that
b ≤ b < ∞ for all solutions. Therefore the inequality shows that h(0;β) → ∞ as α → 0. �

Remarks. 1. The exact integral equation (3.5) does not admit solutions with α ≤ 0, because
the integral in the denominator of (5.9) would diverge at infinity, when α ≤ 0, if a bounded
pBAH were to exist. On the other hand, the boundary-layer equation (5.1) is subject to no
such constraint. The restriction to positive values of α, specified in Section 1, does not apply
to the boundary-layer equation.

2. We have not yet proved that (5.1) has solutions for all β ∈ (0, 1/4). We have proved
existence and uniqueness of solutions for values of β sufficiently close to 0 or to 1/4. Nu-
merical calculations (Section 6) encounter no difficulty with Equation (5.1). Numerical work
and asymptotic analysis of the equation for ξ → 0 and for ξ → ∞ both suggest that (5.4)
and (5.5) give a genuine hint as to the nature of solutions. However, solutions need not decay
exactly like ξ−2 as ξ → ∞.

5.2. INNER AND OUTER APPROXIMATIONS FOR α → 0

(i) In this section we shall follow a path to Equation (5.1) that is of questionable rigour but
that has the advantage of making Equation (5.1) one part of a more complete physical picture.

By an outer approximation for α → 0 we mean one that is valid as α → 0 with | z−zB | ≥
const. > 0 or with | t − 1 | ≥ const. > 0, the z-plane and t-plane being as in Figure 2. By an
inner approximation for α → 0 we mean one that is valid as α → 0 with | z − zB |/α fixed
or with | t − 1 |/α2 fixed. The reason for this scaling is as follows.

The outer approximation of the lowest order to the map z = ẑ(t) is

z = e−iπ/2 t−1/2 (t − 1)1/2 (Im t ≥ 0, t �= 0, arg t and arg(t − 1) in [0, π ]); (5.14)

this corresponds to α = 0 and to a free boundary BC along the positive x-axis in the z-plane.
Recall that πq(t) denotes the angle that the (displaced) free boundary BC in the z-plane
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makes with the horizontal. Mackie [9] solved a linearized problem for the velocity potential
to obtain the outer approximation

q(t) ∼ 2α

π

{
1

x
− tan−1 1

x

}
(0 < x < ∞) (5.15a)

∼ 2α

π

{√
t

1 − t
− tan−1

√
t

1 − t

}
(0 < t < 1), (5.15b)

where tan−1 takes values in (0, π/2). Although (5.15) is not valid for x ↓ 0 or t ↑ 1, we
accept the hint given by (5.15) that in the boundary layer, where disturbances are not small,
| z − zB | is proportional to α and | t − 1 | is proportional to α2. In other words, we make the
guess that the transformation

1 − t =: α2θ, (5.16a)

q(t, α) ∼ q0(θ) as α → 0 with θ fixed , (5.16b)

will lead us to the lowest inner approximation. Note that q ′(t) ∼ −α−2q ′
0(θ).

(ii) We seek outer and inner approximations to q ′(t) by means of the integral equation
(2.25). Our first task is to estimate the functional J (q ′); in the present context, (2.28) is more
helpful than (2.26).

Lemma 5.3. Let γ := 1/2 + α − β = q(1) and let δ := kα2 for some fixed k > 0. Assume
that there are (strictly) positive constants α, c,A,B and β such that for 0 < α ≤ α we have

c ≤ q(τ, α) ≤ γ if 1 − δ ≤ τ ≤ 1 , (5.17a)

q(τ, α) ≤ A

(
1 − τ

δ

)−1/2

+ Bα if 0 ≤ τ < 1 − δ , (5.17b)

and β ≤ β(α) ≤ β. Then there is a number α∗ ∈ (0, α ] such that

J (q ′) = 2α

π

{
1 + O

(
α log

1

α

)}
for 0 < α ≤ α∗. (5.18)

Remark. The term A((1 − τ)/δ)−1/2 in (5.17b) is used in anticipation of (5.25) below.
However, the argument is not circular; if we replace (5.17b) by the weaker condition

q(τ, α) ≤ f

(
1 − τ

δ

)
+ Bα if 0 ≤ τ < 1 − δ, where f ∈ L3(1,∞),

then the only change is that in (5.18) the O-term becomes O(α2/3).
Proof of Lemma 5.3. We refer to (2.28). The main part of (5.18) results from

∫ ∞

1
(t − 1)−1/2 t−3/2 dt = 2,∫ ∞

1+δ

(t − 1)−1−α dt = 1

α

{
1 + O

(
α log

1

α

)}
.
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To bound the error, we consider (2.19) and write t =: 1 + δϑ, τ =: 1 − δζ ; then

−(Pq)(t) =
∫ 1/δ

0

q(1 − δζ )

ζ + ϑ
dζ . (5.19)

The inequalities (5.17) imply that

−(Pq)(t) ≥ c log
1 + ϑ

ϑ
(0 < ϑ < ∞),

−(Pq)(t) ≤




γ log
1 + ϑ

ϑ
+ 2A + Bα log

1

δ
if 0 < ϑ ≤ 1 ,

γ log
1 + ϑ

ϑ
+ Aπϑ−1/2 + Bα log

1

δ
if ϑ > 1 .

The rest is a sequence of elementary inequalities; one example will suffice.

∫ 1+δ

1
(t − 1)−1−α exp {(Pq)(t)} dt <

∫ 1

0
(δϑ)−1−αϑcδ dϑ

= exp

(
α log

1

kα2

)
1

c − α

≤ 2

c

if α ≤ α∗ and α∗ is sufficiently small. �

(iii) The integral equation (2.25) may be written, by means of the integration by parts in
(2.24),

q ′(t) = J (q ′)
(1 − t)−1−α exp{(Pq)(τ)}∫ 1

t
(1 − τ)−1/2+α τ−3/2 exp{−(Pq)(τ)} dτ

(0 < t < 1). (5.20)

Since J (q ′) is of order α, the outer approximation of lowest order results from replacing α

and Pq by zero elsewhere in (5.20):

q ′(t) ∼ 2α

π

(1 − t)−1∫ 1
t

(1 − τ)−1/2 τ−3/2 dτ
= α

π
t1/2(1 − t)−3/2, (5.21a)

whence

q(t) ∼ 2α

π

{ √
t

1 − t
− tan−1

√
t

1 − t

}
, (5.21b)

in agreement with Mackie’s result.

(iv) For the inner approximation of lowest order, application of the transformation (5.16)
to the definition (2.19) of Pq yields

(Pq)(t) ∼ −P

∫ ∞

0

1

θ ′ − θ
q0(θ

′)d(θ ′) =: −(P0q0)(θ) (0 < θ < ∞); (5.22)
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similarly, application of (5.16) and (5.18) to (5.20) yields

−q ′
0(θ) = 2

π

θ−1 exp{−(P0q0)(θ)}∫ θ

0 (θ ′)−1/2 exp{(P0q0)(θ ′)} dθ ′ (0 < θ < ∞). (5.23)

If this equation has a solution such that (P0q0)(θ) → 0 as θ → ∞, then

∫ θ

0
(θ ′)−1/2 exp{(P0q0)(θ

′)} dθ ′ ∼ 2θ1/2 as θ → ∞,

whence

−q ′
0(θ) ∼ 1

π
θ−3/2 and q0(θ) ∼ 2

π
θ−1/2 as θ → ∞. (5.24)

Equations (5.21) and (5.24) imply a matching condition:

q(t, α) ∼ 2α

π
(1 − t)−1/2 (5.25)

both as 1 − t → 0 in the outer approximation and as θ = (1 − t)/α2 → ∞ in the inner
approximation. (This is desirable because, if we set 1 − t = const. αm with 0 < m < 2 and
let α → 0, then 1 − t → 0 and θ → ∞.) The matching condition leads one to expect that
the composite approximation

q0(θ) + 2α

π

{√
t

1 − t
− tan−1

√
t

1 − y

}
− 2α

π
(1 − t)−1/2 (5.26)

should be a lowest non-trivial approximation to q(t, α) for all t ∈ [0, 1]. However, this is
only a hope because we have not proved (a) existence of a function q0 satisfying (5.23) and
(5.24), (b) that the difference between the exact solution and (5.26) is of the expected order,
say O

(
α2 log(1/α)/(α + √

1 − t)
)
.

(v) We now pass from (5.23) to the form (5.1) of the boundary-layer equation. First, let

β0 := 1

2
− q0(0) = 1

2
+

∫ ∞

0
q ′

0(θ) dθ , (5.27)

(L0q
′
0)(θ) :=

∫ ∞

0
log

1

|θ ′ − θ | q ′
0(θ

′) dθ ′, 0 ≤ θ < ∞ ; (5.28)

these are the present versions of (2.17b) and (2.23). Either by application to (5.23) of integra-
tion by parts in (5.22) or by application of (5.16) and (5.18) to (2.25) one obtains

−q ′
0(θ) = 2

π

θ−1/2−β0 exp{−(L0q
′
0)(θ)}∫ θ

0 (θ ′)−1+β0 exp{(L0q
′
0)(θ

′)} dθ ′ (0 < θ < ∞). (5.29)

Let b0 := 2/(1 − 4β0). By analogy with (3.2) to (3.4) we introduce

σ := θ1/b0, h0(σ ) := −θ1/2+2β0q ′
0(θ), (M0h0)(σ ) := (L0q

′
0)(θ)−(L0q

′
0)(0), (5.30)



248 L.E. Fraenkel and G. Keady

Figure 3. The graph of α(β) according to numerical solution of equation (2.25) for values of β from 1/768 to
0.096 (Keady and Fowkes [8]).

where σ is no longer a dummy variable for s but, rather, a new co-ordinate. Because q ′
0(θ)dθ =

−b0h0(σ )dσ , there results

(M0h0)(σ ) = b

∫ ∞

0
log

∣∣∣∣
( σ

σ ′
)b − 1

∣∣∣∣ h0(σ
′)dσ ′, (5.31)

h0(0) = 2β

π
exp{−2(L0q

′
0)(0)}, (5.32)

h0(σ )

h0(0)
= exp{−(M0h0)(σ )}

bβσ−bβ
∫ σ

0 (σ ′)bβ−1 exp{(M0h0)(σ
′)} dσ ′ (0 < σ < ∞), (5.33)

in which b = b0, β = β0 and β0 = 1/2 − b0

∫ ∞

0
h0. Finally, the transformation

ξ := b2
0 h0(0) σ, h̃(ξ) := h0(σ )

h0(0)
(5.34)

yields (5.1) to (5.3) with b = b0, β = β0 and α = 0.

(vi) Since Theorem 5.2 gives (5.1) to (5.3) a rigorous basis as limiting equations when
α → 0, it is also desirable to proceed from h̃(ξ ) to q ′

0(θ). We assume that h̃ = h̃(.;β0) satisfies
(5.1) and (5.3) with α = 0 in (5.3); if we can use this h̃ to evaluate h0(0) and (L0q

′
0)(0), then

the passage to q ′
0(θ) by way of (5.34) and (5.30) is straightforward.

Let λ0 := h0(0); then (5.32) is equivalent to the equation λ0 = f (λ0), where

f (λ) : = 2β0

π
exp

{
2 log λ

∫ ∞

0
h̃ + 2

∫ ∞

0
log

b2
0

ξ
h̃(ξ) dξ

}
(5.35)

= const. λk with k := 2
∫ ∞

0
h̃ = 1 + b0

2
.

Thus k > 1, which ensures that f has a unique fixed point λ0 in (0,∞). (We expect that
b0 ≈ 10/3 so that k ≈ 8/3.) The number (L0q

′
0)(0) is now determined by (5.32).
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Table 1. Some results for β(α) from Dobrovol’skaya [4] and
from Zhao and Faltinsen [7]. The * labels numbers computed
later for comparison with results of Keady.

α βD βZF

1/2 0 0

1/3 0·011 0·009913

1/6 0·036 0·03591

1/20 0·072 0·07153

0·026 1/12

0·0252 1/12

1/60 0·089

10−2 0·094 0·0923∗
10−3 0·100 0·0986∗
10−4 0·100

Table 2. Some results for α(β) and q(1; β) from Zhao and
Faltinsen [7] and from Keady and Fowkes [8].

(interpolated) (interpolated)

β α|ZF α|KF q(1)|ZF q(1)|KF

1/768 0·4453 0·4454 0·9440 0·9441

1/384 0·4202 0·4205 0·9176 0·9179

1/192 0·3834 0·3835 0·8782 0·8783

1/96 0·3286 0·3286 0·8182 0·8182

1/48 0·2487 0·2487 0·7279 0·7279

1/24 0·1419 0·1419 0·6002 0·6003

1/12 0·252 0·0253 0·4419 0·4420

6. Numerical results

Figure 3 and Tables 1 and 2 substantiate the remark in Section 1 that the numerical work
of Dobrovol’skaya [4], of Zhao and Faltinsen [7] and of Keady and Fowkes [8] leads to
monotonic curves for β(α) or α(β), with β0 = β ≈ 0 · 1, and that these various calculations
show good agreement.

The numerical scheme used by Keady and Fowkes [8] to approximate solutions of (2.25),
at given β, is outlined in their paper. The details of the iteration are discussed there; here we
note merely that finding a good starting point for the iteration is not a difficulty. Asymptotic
approximations for small β are available from [3]; one can use solutions at smaller β as good
starting approximations for slightly larger β.

In Table 2 the values of β are 2−j /12 for j = 0, 1, . . . , 6. The only significance of
this sequence is that at the special value β = 1/12 certain checks and comparisons with
exact formulae were possible. Logarithmic potentials were calculated by means of a weighted
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Figure 4. The graph of α(β) according to numerical solution of the boundary-layer equation (5.1) for values of β

from 1/4 to 1/12 [14].

Table 3. Values of α(β) near α = 0. Only the last
column (α|K,b.l.) is based on the boundary-layer
equation.

1997–8 2002

β α|D α|ZF α|K α|K,b.l.

0·0923 0·010 0·010 0·0204

0·094 0·010

0·0986 0·001 0·001 0·0002

0·0995 0

0·100 0·001

trapezoidal rule. In general, the weights were calculated by using the NAG library integration
routines; for β = 1/12, the weights could be calculated exactly. Further details are available
from G. Keady’s web pages.

Figure 4 presents numerical results based on the boundary-layer equation (5.1); Table 3
compares such results with earlier ones near α = 0 based on (2.25) or on variants of (2.25).
As was emphasized in Section 1 and after Theorem 5.2, Equation (5.1) allows calculation on
both sides of α = 0, so that β0 can be found by interpolation rather than extrapolation.

The numerical scheme for Equation (5.1) is described by Keady [14]. A new feature is
the treatment of the logarithmic potential Mh̃ in (5.2). The decomposition M = M∞ − Mκ

was introduced in (4.22) to (4.25); it was evident there that M∞gn dominates Mκgn when
bm(n) → ∞. Now we add the observation that, for smooth functions f with certain decay
properties,

(Mκf )(ξ) = µb ξf (ξ) + O(b−4) as b → ∞, (6.1)

where

µb :=
∫ ∞

0
κ(η; b)dη = 1 − π

b
cot

π

b
= 1

3

(π

b

)2 + 1

45

(π

b

)4 + . . . . (6.2)
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Figure 5. Graphs of (Mκ h̃1)(ξ) (continuous curve) and µbξh̃1(ξ) (broken curve) for β = 1/10 (hence for
b = 10/3) and for a first approximation h̃1 to the solution h̃ of equation (5.1).

A precise form of this observation appears below as Theorem 6.1, but for numerical treatment
of (5.1) that theorem is less relevant than the following two remarks.

(i) The approximation (Mκf )(ξ) ≈ µb ξf (ξ) seems to be numerically better, for values
of b down to 10/3, than strict analysis is likely to show; this is illustrated by Figure 5.

(ii) If (Mκ h̃)(ξ) − µbξ h̃(ξ) is neglected in equation (5.1), or is regarded as known from
a previous iteration, then equation (5.1) can be written as an ordinary differential equation of
third order for

E(ξ) := exp{(M∞h̃)(ξ)}, 0 ≤ ξ < ∞, (6.3)

and the initial values E(0), E′(0), E′′(0) are known. This fact is basic to the numerical scheme
of Keady [14].

Here is a precise form of (6.1).

Theorem 6.1. Let f ∈ C2[0,∞) with

‖ f (m) ‖γ,m := supξ≥0(1 + ξ)1+γ+m
∣∣ f (m)(ξ)

∣∣ < ∞ for m = 0, 1, 2 (6.4)

and for some constant γ ∈ (0, 1]. Then there are constants A1(b) and A2(b) such that, for
b ≥ b > 3,

| (Mκf )(ξ) − µb ξf (ξ) | ≤ 1

b4

{
A1(b) ‖ f ′ ‖γ,1

ξ 2

(1 + ξ)2+γ

+A2(b) ‖ f ′′ ‖γ,2
ξ 3

(1 + ξ)3+γ

}
.

(6.5)

The weakness of this result, as of others in the same direction, is that A1(b) → ∞ as b ↓ 2
and that A2(b) → ∞ as b ↓ 3; thus (6.5) is useless for b = 10/3.

7. Concluding remarks

1. The main contribution of this paper has been the proof in Section 4 that, for the set of
solutions established in [2], which is such that every wedge angle 2πα in the open interval
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(0, π) occurs at least once, the supremum πβ̄ of the contact angle πβ is strictly less than
π/4. In fact it was shown that, if πβ̄ were equal to π/4, then there would be a sequence
((βn, hn))

∞
n=1 of solutions for which α(βn, hn) → −1/4 as n → ∞, contradicting strongly

the fact that 0 < α < 1/2 for a solution.

2. With the result β̄ < 1/4 in hand, we showed relatively easily in Theorem 5.2 that there
is a boundary-layer phenomenon near the contact point B as α → 0; more precisely, that the
weighted curvature h(0), of the free boundary BC at the contact point B, tends to infinity as
α → 0. This explains why the contact angle πβ does not tend to π/2 as α → 0.

3. The boundary-layer equation (5.1), which in effect was used in [2] to construct a limiting
solution for β → 0 and α → 1/2, also played a significant part in Section 4 under the
assumption that β → 1/4 for a sequence of solutions. Theorem 5.2 now ensures that the exact
integral equation has this same limiting form (5.1) when α → 0.

4. In Section 5.2 it was shown (not rigorously, but perhaps persuasively) that a transformed
version of the boundary-layer equation (5.1) yields an inner approximation for α → 0 that
appears to complement (and certainly matches) Mackie’s outer approximation in [9].

5. Inevitably, more questions remain open than have been answered in [2, 3] and the present
paper. Is the connected set � of solutions (β, h) in the product space (0, 1/4) × Y (Theorem
3.6) a set of intersecting curves? A single curve? Is the function β �→ α(β, h) monotonic, as
the numerical results in Section 6 suggest? Recall that β0 corresponds, loosely speaking, to
α = 0 and that it is defined precisely by (1.1). Does the supremum β̄ equal β0, as the results
in Section 6 also suggest? Might it be that β̄ = β0 = 1/10 exactly?

References

1. H. Wagner, Über Stoss- und Gleitvorgänge an der Oberfläche von Flüssigkeiten. Z. Angew. Math. Mech. 12
(1932) 193–215.

2. J. B. McLeod and L. E. Fraenkel, On the vertical entry of a wedge into water. (In preparation.)
3. L. E. Fraenkel and J. B. McLeod, Some results for the entry of a blunt wedge into water. Phil. Trans. R.

Soc. London A 355 (1997) 523–535.
4. Z. N. Dobrovol’skaya, On some problems of similarity flow of fluid with a free surface. J. Fluid Mech. 36

(1969) 805–829.
5. P. R. Garabedian, Asymptotic description of a free boundary at the point of separation. AMS Proc. Symp.

Appl. Math. 17 (1965) 111–117.
6. A. G. Mackie, The water entry problem. Quart. J. Mech. Appl. Math. 22 (1969) 1–17.
7. R. Zhao and O. Faltinsen, Water entry of two-dimensional bodies. J. Fluid Mech. 246 (1993) 593–612.
8. G. Keady and N. D. Fowkes, The vertical entry of a wedge into water: integral equations and numerical res-

ults. In: E. O. Tuck and J. A. K. Scott (eds.), Proceedings of the Engineering Mathematics and Applications
Conference. Adelaide: Institute of Engineers,Australia (1998) pp. 277–280.

9. A. G. Mackie, A linearised theory of the water entry problem. Quart. J. Mech. Appl. Math. 15 (1962)
137–151.

10. E. A. Johnstone and A. G. Mackie, The use of Lagrangian coordinates in the water entry and related
problems. Proc. Camb. Phil. Soc. 74 (1973) 529–538.

11. E. C. Titchmarsh, Eigenfunction Expansions, part II. Oxford: Clarendon (1958) 404 pp.
12. E. C. Titchmarsh, Introduction to the Theory of Fourier Integrals. Oxford: Clarendon (1948) 394 pp.
13. J. C. Burkill, The Theory of Ordinary Differential Equations. London: Longman (1975) 121 pp.
14. G. Keady, On a boundary layer in the problem of a wedge entering water. In: S. Wang and N. D. Fowkes

(eds.), Proceedings of the BAIL2002 Conference. Perth: University of Western Australia (2002) pp. 153–158.


